Перейти к содержимому

Компенсация силы моментом

Компенсация силы моментом

1.7.1. Аэродинамическая компенсация рулей

В полете при отклонении рулевых поверхностей возникают шарнирные моменты, которые уравновешиваются усилиями летчика на командных рычагах управления. Эти усилия зависят от размеров и угла отклонения руля, а также от скоростного напора. На современных самолетах усилия управления получаются слишком большими, поэтому приходится в конструкции рулей предусматривать специальные средства для уменьшения шарнирных моментов и уравновешивающих их усилий управления. С этой целью используется аэродинамическая компенсация рулей, суть которой заключается в том, что часть аэродинамических сил руля создают момент относительно оси вращения, противоположный основному шарнирному моменту.
Наибольшее распространение получили следующие виды аэродинамической компенсации:

  • роговая; на конце руля часть его площади в виде «рога» располагается спереди от оси шарниров, что обеспечивает создание момента обратного знака по отношению к основному шарнирному ( рис.1.07),
  • осевая; часть площади руля по всему размаху располагается спереди от оси шарниров (ось шарниров смещается назад), что уменьшает шарнирный момент ( рис.1.08),
  • внутренняя; обычно используется на элеронах и представляет собой пластины, прикрепленные к носку элерона спереди, которые связаны гибкой перегородкой со стенками камеры внутри крыла. При отклонении элерона в камере создается разница давлений над и под пластинами, которая уменьшает шарнирный момент ( рис.1.09),
  • сервокомпенсация; в хвостовой части руля шарнирно подвешивается небольшая поверхность, которая тягой связывается с неподвижной точкой на крыле или оперении. Эта тяга обеспечивает автоматическое отклонение сервокомпенсатора в сторону, противоположную отклонению руля. Аэродинамические силы на сервокомпенсаторе уменьшают шарнирный момент руля ( рис.1.10).

Углы отклонения и эффективность работы такого компенсатора пропорциональны углам отклонения руля, что не всегда оправдывает себя, т.к. усилия управления зависят не только от углов отклонения руля, но и от скоростного напора. Более совершенным является пружинный сервокомпенсатор, у которого за счет включения в кинематику управления пружины с предварительной затяжкой углы отклонения пропорциональны усилиям управления руля, что наилучшим образом отвечает назначению сервокомпенсатора - уменьшать эти усилия.

Компенсация температурных расширений

С. В. Комаров, ведущий специалист отдела промышленного оборудования, ros-pipe.ru

Любые перемещения, возникающие вследствие внешних воздействий на трубопровод (например, сейсмических и др.), должны быть учтены при его проектировании, также следует учитывать и температурное расширение трубопроводов.

Строительные изделия, такие как трубы, оборудование, строительные конструкции, изменяют свои размеры в результате изменения температур. В настоящей статье затронуты вопросы компенсации теплового расширения и сжатия трубопроводов.

Вследствие изменения температуры рабочей среды в трубах возникают температурные напряжения, которые могут передаваться на арматуру, насосное оборудование и т.д. в виде реактивных сил и моментов. Это создает потенциальную опасность разгерметизации стыков, разрушения арматуры или оборудования.

Три наиболее часто используемых способа компенсации перемещений трубопроводов:

Выбор способа компенсации зависит от вида системы трубопроводов, ее схемы, а также от особенностей ландшафта, наличия рядом других коммуникаций и прочих условий.

Перечисленные выше примеры представлены в качестве общих инженерных решений и не должны рассматриваться как единственно верные для конкретной системы трубопроводов. Мы будем рассматривать способ компенсации расширения прямолинейных участков трубопроводов при помощи осевых сильфонных компенсаторов.

Расширение трубопроводов

Первым шагом для решения вопроса компенсации температурных перемещений является вычисление точного изменения длины участков трубопроводной системы в соответствии с предъявляемыми условиями безопасности.

Определение (расчет) теплового расширения трубопровода производится по следующей формуле:

где а – коэффициент температурного расширения, мм/ (м·°С);
L – длина трубопровода (расстояние между неподвижными опорами), м;
∆t – разница значений между максимальным и минимальным значениями температур рабочей среды, °С.

Коэффициент температурного расширения берется из таблицы линейного расширения труб из различных материалов.

Как видно из таблицы, наиболее подвержены температурному расширению трубопроводы из полимерных материалов, в связи с этим способы компенсации полимерных труб несколько отличаются от способов компенсации стальных.

Значения коэффициента линейного расширения являются усредненными для каждого вида материала. Эти значения не должны применяться для расчетов трубопроводов из других материалов. Коэффициенты растяжения в разных источниках могут различаться на 5% и более, поскольку их вычисления проводятся при разных условиях и различными методами. Желательно применять для расчетов коэффициент линейного расширения, который представлен в технической документации производителя труб.

Рассмотрим реальный пример.

Возьмем прямолинейный участок трубопровода диаметром 219 мм из черной углеродистой стали длиной 100 м. Максимальная температура tmax = 140 °С, минимальная tmin = –20 °С.

Производим расчеты:
∆t = 140 – (–20) = 160 °С,
изменение длины трубопровода:
∆L = 0,0115 × 160 × 100 = 184 мм.

Полученный результат говорит о том, что трубопровод при заданных значениях меняет свою длину на 184 мм. Для обеспечения правильной работы трубопровода подходит осевой сильфонный компенсатор условным диаметром 200 мм и компенсирующей способностью 200 мм (например, КСО 200–16–200). При подборе данного типоразмера компенсатора имеется запас компенсирующей способности, а это положительно скажется на сроке работы трубопровода.

В случае, если полученное значение ∆L будет превышать значение компенсирующей способности производимых типоразмеров компенсаторов, то следует уменьшить длину участка трубопровода между двумя неподвижными опорами пропорционально имеющейся компенсирующей способности, а затем подобрать необходимый сильфонный компенсатор, пользуясь вышепредставленным расчетом.

Аэродинамическая компенсация

Рулей и элеронов

Управляемость самолета оценивается по тем усилиям, которые прикладывает летчик к рычагам управления. Величина этих усилий зависит не только
от кинематической схемы системы управления,
но и от величины аэродинамических моментов
относительно оси вращения рулей и элеронов, возникающих при их отклонении.

Понятие о шарнирном моменте. Шарнирным называется момент аэродинамической нагрузки руля относительно его оси вра­щения:

,

где R — аэродинамическая нагрузка руля;

— расстояние ц.д. руля от оси вращения.

Рис. 7.2. Шарнирный момент

Шарнирные моменты всегда противодействуют отклонению руля, и поэтому вызывают усилия на командных рычагах, которые преодолеваются пилотом.

Шарнирный момент считается положительным,
если он стремится отклонить руль (элерон) в положительном направлении (руль высоты – вниз, руль направления – вправо, правый элерон – вниз).

Величина Мш зависит от формы и размеров рулей (элеронов), углов их отклонения. Скорости полета
и плотности окружающей среды и определяется по формуле:

Мш = m b q ,

где m — коэффициент шарнирного момента;

S — площадь руля в м;

b — средняя геометрическая хорда руля;

q = — скоростной напор в области руля в .

У современных скоростных самолетов, имеющих большие размеры органов управления и совершающих полет с большими скоростными напорами,
шарнирные моменты велики.

Аэродинамическая компенсация рулей и элеронов служит для уменьшения усилий на командных рычагах посредством уменьше­ния шарнирного момента.

Принцип любой аэродинамической компенсации заключается в том, чтобы приблизить возникающую при отклонении руля аэродинамическую силу к оси вращения руля.

Существуют следующие виды аэродинамической компенсации:

а) осевая компенсация;

б) роговая компенсация;

в) внутренняя компенсация;

Осевая компенсация состоит в том, что ось вращения руля (или элерона) смещена назад так, чтобы пло­щадь, расположенная перед осью вращения, составляла 25—28% от площади руля. Компенсация создается частью руля, расположенного впереди оси вращения.

Рис.7.3. Осевая компенсация

При смещении оси вращения назад от передней кромки часть руля, находящаяся перед осью вращения (компенсатор), создает шарнирный момент обратного знака. Это приведет к уменьшению суммарного шарнирного момента (рис. 7.3,а). Если ось вращения совместить с центром давления руля, то шарнирный момент станет равным нулю – руль будет полностью скомпенсирован. При дальнейшем смещении оси вращения руля назад появится шарнирный момент обратного знака. Это неблагоприятное явление называется перекомпенсацией руля. В практике самолетостроения перекомпенсация не допускается, т.к. приводит к появлению обратных усилий на рычагах управления.

Осевая компенсация широко распространена из-за простоты конструктивного выполнения и хороших аэродинамических характеристик.

На современных самолетах роговая компенсация применяется сравнительно редко, т.к. создает неравномерный эффект компенсации вдоль размаха руля
и при больших углах отклонения руля приводит к отрыву потока от его поверхности, вызывающему тряску.

Внутренняя компенсация, широко применяемая на элеронах, осуществляется при помощи мягкой герметической перегородки (диафрагмы). Шарнирный
момент уменьшается благодаря моменту сил, действующих на компенсатор, расположенный в полости
с узкими щелями внутри оперения (крыла).

Рис. 7.4. Внутренняя компенсация

Верхняя часть полости герметически отделена от нижней гибкой диафрагмой. Компенсатор воздушным потоком не обтекается, а находится под действием разности давлений, возникающих в полости при отклонении руля (элерона). Преимущество внутренней компенсации заключается в том, что компенсатор не вносит никаких возмущений в поток, что особенно важно при больших числах М.

Недостатком такой компенсации является ограничение диапазона отклонения органов управления,
в особенности, при тонком профиле оперения (крыла).

Сервокомпенсатор – это дополнительный руль, кинематически связанный с основным рулем и неподвижной частью оперения . При отклонении руля
в одну сторону сервокомпенсатор отклоняется в противоположную, вследствие чего на сервокомпенсатор действуют аэродинамические силы, уменьшающие шарнирный момент руля.

Аэродинамическая компенсация, если она правильно подобрана, уменьшает шарнирный момент, но не сводит его к нулю.

При продолжительном полете на каком-либо режиме целесообразно шарнирный момент свести к нулю. Для этой цели применяются триммеры.

Триммер – вспомогательная рулевая поверхность, которая устанавливается в задней части руля или элерона, не связанная кинематически с отклонением руля. Летчик управляет триммером непосредственно из кабины. Основное назначение триммера – балансировка самолета.

Для получения нулевого шарнирного момента триммер отклоняется на соответствующий угол, противоположный по знаку углу отклонения основного руля.

Уменьшить шарнирный момент руля высоты можно также отклонением (перестановкой) подвижного (переставного) стабилизатора.

Переставной стабилизатор, устанавливаемый
в полете на некоторый угол атаки, позволяет при длительных полетах на определенном режиме уменьшить необходимые углы отклонения рулей высоты. Это
в значительной мере снижает усилия, прикладываемые летчиком к ручке управления.

При больших скоростях полета на величину шарнирного момента значительное влияние оказывает сжимаемость воздуха.

При переходе от дозвуковых скоростей к сверхзвуковым происходит существенное увеличение как шарнирных моментов, так и усилий на рычагах управления. Управление самолетом без соответствующих устройств в системе управления становится невозможным.

Устройства, воспринимающие резко возросшие усилия на рычагах управления, называются гидроусилителямиили бустерами. При наличии гидроусилителя – вспомогательного механизма, управляющего рулями, летчик управляет уже только этим механизмом, что гораздо легче. Чем управлять рулями.

Читайте так же:  Приказ по ликвидации академической задолженности в школе

На больших самолетах гидроусилители являются
в настоящее время единственным средством, обеспечивающим приемлемые усилия на рычагах управления.

Рис. 7.7. Виды аэродинамической компенсации

1. Что называется статической управляемостью?

2. Что называется динамической управляемостью?

3. При большой или малой степени управляемости самолета “строг” в управляемости?

4. Что понимается под степенью управляемости?

5. Что обеспечивает продольная управляемость самолета?

6. Что называется продольной управляемостью?

7. Почему при отклонении элеронов происходит разворот самолета в сторону крена?

8. Что необходимо чтобы при развороте самолета не возникал крен?

9. Когда и зачем применяется дифференциальное отклонение элеронов?

10. Что понимается под дифференциальным отклонением элеронов?

11. Перечислите особенности управляемости скоростных самолетов.

12. Что называется равенством элеронов?

13. Для чего применяется аэродинамическая компенсация рулей и элеронов?

14. Что называется управляемостью самолета?

15. Как количественно можно охарактеризовать управляемость?

Дата добавления: 2016-12-27 ; просмотров: 3577 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

- в гражданском праве - возмещение убытков, возникших вследствие нару шения гражданско-правовой обязанности, когда ее исполнение в натуре (т.н. реальное исполнение) в связи с таким нарушением стало невозможным;когда управомоченное лицо утратило по вине обязанного лица интерес к ре альному исполнению обязанности; в иных предусмотренных законом случаяхденежного возмещения имущественных потерь, вызванных нарушением обязан ностей.

- в трудовом праве - выплаты рабочим и служащим, производимые в уста новленных законом случаях.

Словарь финансовых терминов .

Финансовый словарь Финам .

Терминологический словарь банковских и финансовых терминов . 2011 .

Смотреть что такое "КОМПЕНСАЦИЯ" в других словарях:

КОМПЕНСАЦИЯ — (лат., этим. см. пред. слово). Уравнение действий какой либо силы, также вообще удовлетворение, погашение. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. КОМПЕНСАЦИЯ 1) уравнение действия силы; 2) вообще… … Словарь иностранных слов русского языка

компенсация — и, ж. compensation f. <, лат. compensatio. 1. Возмещение чего л., вознаграждение. Сл. 18. Не можно ли оное, как компенсациею, то есть чрез деньги учредить?16. 11. 1775. Реляция Н. В. Репнина Екатерине II. // РИО 15 491. В разсуждении короля… … Исторический словарь галлицизмов русского языка

Компенсация — Компенсация (от лат. compesatio «возмещение») Денежные компенсации Возмещение ущерба; Вознаграждение за неиспользованное право; Способ погашения обязательств путём зачета встречных требований должника и кредитора; Выдача денежных … Википедия

компенсация — возмещение, индемнитет, компенсирование, покрытие, восполнение, вознаграждение; стабилизация, выравнивание, уравновешивание, балансировка, симметрирование, нейтрализация, покрывание, выплата, уравновешение. Ant. раскачивание, колебание Словарь… … Словарь синонимов

КОМПЕНСАЦИЯ — КОМПЕНСАЦИЯ, компенсации, мн. нет, жен. (лат. compensatio). 1. Вознаграждение за труд или за какой нибудь ущерб (книжн.). Компенсация убытков. В компенсацию за понесенные труды мне предложили 100 рублей. || Выплата, причитающаяся наемному… … Толковый словарь Ушакова

компенсация — Согласно З. Фрейду реакция организма и психики, противодействующая травматическим возбуждениям путем изъятия активной энергии у всех психических систем и созданием соответственного энергетического заполнения вокруг травмированных элементов.… … Большая психологическая энциклопедия

КОМПЕНСАЦИЯ — (от лат. compensatio возмещение) в психопогии, восстановление нарушенного равновесия психич. и психофизиологич. процессов путём создания противоположно направленной реакции или импульса. В этом самом общем смысле понятие К. широко… … Философская энциклопедия

компенсация — Способность сохранять неизменными объем и профиль затяжки в момент изменения величины перепада давления в отверстии для всасывания. [ГОСТ Р 52463 2005] компенсация Возмещение потерь, понесенных убытков, расходов, возврат долга. Различают: 1)… … Справочник технического переводчика

Компенсация — (от лат. compensatio возмещение, compensare уравновешивать; англ. compensation) 1) в гражданском праве возмещение вреда, или в определенных случаях выплата сверх возмещения вреда, обусловленного нарушением гражданско правовой обязанности в… … Энциклопедия права

Компенсация — возмещение потерь, понесенных убытков, расходов, возврат долга. Словарь бизнес терминов. Академик.ру. 2001 … Словарь бизнес-терминов

Что нам мешает управлять и как с этим бороться.

Все мы привыкли понятие «надежная опора» связывать с твердой поверхностью. Для автомобиля — это земля. Прочнее не придумаешь. Любой может попробовать и почувствовать. Воздух же — субстанция ненадежная, но именно она является, так сказать, средой обитания многочисленной армии аппаратов тяжелее воздуха, самолетов и вертолетов.

Самолет L-410. Хорошо видны сервокомпенсаторы руля высоты и руля направления.

И именно она же предоставляет им большие возможности, делая пребывание этих металлических птиц в сотнях и тысячах метров над землей вполне комфортным.

Специфика, понятно, тут другая, и хотя определенные термины, используемые для машин, передвигающихся по твердой поверхности на 4-х колесах для самолета звучат также, на этом сходство, в общем-то, и заканчивается.

Устойчивость, управляемость, балансировка, центровка. Без всего этого и еще много чего другого в воздухе не обойтись. Причем все эти вещи зачастую между собой связаны.

Для раскрытия своих возможностей самолет использует аэродинамические поверхности.

Все движение и ориентация его в воздухе основано на действии различных сил и моментов, большая часть из которых в той или иной степени носит аэродинамическую природу. Эти силы и порождаемые ими моменты формируются при взаимодействии аэродинамических поверхностей с воздушным потоком.

Силы и моменты, различные по местам приложения и воздействия, можно поделить на полезные и вредные. Это ни у кого не вызывает сомнений :-), как, впрочем, и тот факт, что в основе совершенствования аэродинамики летательного аппарата лежит необходимость увеличения всего того, что полезно, и уменьшение того, что вредно.

Делается все это различными способами и в связи с этим имеет место такое понятие как компенсация . То есть вероятно, что какое-то нежелательное воздействие не может быть устранено, но может быть скомпенсировано, что в общем-то равносильно его устранению.

Чего же такого вредного нужно компенсировать во время полета самолета? Да, в общем-то, хватает всякого. Но сегодня остановимся на моменте аэродинамических сил, носящим, на мой взгляд, несколько экзотическое название. Это шарнирный момент. Название его вроде бы на связь с аэродинамикой не указывает, но на самом деле связь прямая.

Все просто. Любая управляющая поверхность самолета связана с остальной конструкцией через шарнир. Отклоняясь в процессе управления, она испытывает на себе действие аэродинамической силы, которая, относительно точки вращения этой поверхности (то есть центра шарнира) как раз и образует момент, по понятным уже причинам именуемый шарнирным.

Отчего зависит его величина и в чем, собственно, состоит его вредность? Хотя правильнее видимо все же будет упомянуть не только о вредности, но и о полезности шарнирного момента. Поэтому подкорректируем вопрос: в чем его вред, а в чем польза, если она есть?

Величина момента, как известно, определяется величинами силы и плеча этой силы. Для нашего случая величина аэродинамической силы зависит от площади управляющей поверхности. А плечо определяется ее хордой (то же, что и хорда профиля), так как чем длиннее хорда, тем дальше точка приложения силы (то есть центр давления управляющей поверхности) от точки поворота (то есть центра шарнира).

Понятно, что с увеличением геометрических размеров летательного аппарата, требующих увеличения потребных размеров рулей, шарнирный момент тоже увеличивается. Увеличивается он так же с ростом угла отклонения управляющей поверхности.

Схема возникновения шарнирного момента.

Кроме того шарнирный момент растет с с увеличением числа М. Здесь причины две. Первая – это рост скоростного напора, вызывающий увеличение аэродинамической силы. Вторая причина, более характерная для больших скоростей связана с тем, что при переходе от дозвуковых скоростей к сверхзвуковым центр давления аэродинамических поверхностей (в том числе и управляющих) смещается назад (об этом я упоминал здесь).

Это смещение естественно вызывает увеличения плеча приложения силы (относительно шарнира) и, в конечном итоге, рост величины шарнирного момента. Эта величина может быть значительной, так что самое время вспомнить о вреде.

Шарнирный момент присутствует безусловно, а на больших самолетах или же на больших скоростях (или же при том и другом вместе) он может достигать просто таки чрезмерных величин.

Так как создаваемое усилие передается на элементы системы управления, то они безусловно должны обладать определенной прочностью для того, чтобы выдержать все эти нагрузки. А увеличение прочности очень часто означает увеличение массы, что ни для какого летательного аппарата никак нельзя назвать положительным фактором.

Кроме того есть в системе управления одно звено, которое, в общем-то, невозможно ни упрочнить, ни усилить. Это пилот, воспринимающий на себя через органы управления в кабине воздействие шарнирного момента на управляющие поверхности.

Так как создаваемое усилие передается по элементам системы управления на ручку управления самолетом и педали в кабине, то летчик при пилотировании будет вынужден испытывать и преодолевать нагрузки, иной раз очень большие, а при определенных условиях полета (на соответствующей технике, конечно) может просто не справиться с управлением. Не хватит мускульной силы…

Пилоту, как и любому человеку, к сожалению свойственно уставать. Поэтому, даже если величины шарнирного момента не стол грандиозны, все равно практически всегда существует необходимость его уменьшения, то есть частичной или даже полной компенсации, для избавления летчика от лишних нагрузок при пилотировании.

Это чаще всего означает наличие дополнительных систем на самолете, то есть все та же лишняя масса. Конечно, она может быть и небольшой, в виде нескольких малоразмерных тяг или электрических исполнительных механизмов, но может быть и в виде тяжелых систем гидроусиления (об этом ниже), когда летательный аппарат вынужден возить с собой набор массивных болванок бустеров и систему их обслуживания. Вред налицо :-). Ну, а что же о пользе?

Вредные и полезные нагрузки.

Режим полета летательного аппарата в общем случае может быть либо маневренным , когда аппарат выполняет какие-либо кратковременные эволюции в полете, либо установившимся .

Когда самолет длительно находится в каком-то установившемся режиме полета, штатном или нештатном (например, в наборе высоты или при несимметричности тяги двигателей), то летчик, в зависимости от условий, бывает вынужден так же длительно прикладывает некоторые усилия к органам управления для сохранения этого режима (то есть сбалансированности самолета), тем самым противодействуя шарнирному моменту. Эти усилия называются балансировочными . Они лишь только утомляют летчика, поэтому от них желательно избавляться.

Читайте так же:  Штраф за не подачу уведомления

На маневренном режиме и усилия прикладываются так называемые маневренные . Природа их возникновения все та же, но значение несколько иное. Конечно, от них летчик тоже устает, но совсем от них избавляться нельзя. Ведь в соответствии с этим нагрузками, которые летчик ощущает на ручке управления и педалях, он осуществляет пилотаж. Они позволяют ему судить об интенсивности маневра, о перегрузке и поведении самолета.

В этом как раз и заключается польза (хоть и косвенная) шарнирного момента.

Исходя из всего этого и разработаны различные конструкторские решения для борьбы с шарнирным моментом. Принцип их применения во многом зависит от характера нагрузок, которые летчик воспринимает через ручку управления и педали в кабине, то есть в общем-то от режима полета.

Способы компенсации шарнирного момента.

В первую очередь будем говорить о так называемой аэродинамической компенсации .

Суть ее состоит в полезном использовании энергии набегающего потока воздуха. В результате определенных конструктивных решений на управляющих аэродинамических поверхностях (рулях) создаются условия для возникновения момента сил аэродинамической природы, сопоставимого по величине с шарнирным моментом, но направленного в противоположную сторону.

Этот вновь возникающий момент частично или полностью компенсирует шарнирный, тем самым снимая с ручки управления лишние нагрузки и облегчая пилотирование. Природа его возникновения аналогична природе возникновения «нашего вредного» момента, и по сути дела он из себя представляет точно такой же шарнирный момент, только возникающий на, так сказать, специально отведенных для этого местах.

Это один из самых распространенных видов простейшей аэродинамической компенсации. Распространена осевая компенсация благодаря ее простоте и эффективности, а так же из-за того, что она не уменьшает эффективность самого руля. Суть ее в том, что ось вращения рулевой поверхности смещена назад, ближе к ее центру давления (то есть точке приложения аэродинамической силы). В этом случае шарнирный момент уменьшается за счет уменьшения плеча этой силы.

Такая компенсация применяется в том числе и на многорежимных самолетах (оборудованных системой гидроусиления), летающих как на дозвуковых, так и на сверхзвуковых скоростях. Она необходима для оптимальной разгрузки системы управления и снижения потребной мощности гидроусилителей на всех числах М полета, а также для обеспечения возможности аварийного перехода на ручное управление в случае отказа системы гидроусиления. Осевая компенсация цельноповоротных стабилизаторов таких самолетов часто выполняется с « перекомпенсацией ».

Это означает, что на дозвуковых скоростях точка приложения аэродинамической силы (центр давления) при отклонении стабилизатора находится впереди оси вращения и способствует дальнейшему отклонению стабилизатора в крайнее положение (то есть разгружает его). На сверхзвуковых скоростях точка приложения аэродинамической силы смещается назад за ось вращения. Но, вследствие перекомпенсации на дозвуке, плечо силы на сверхзвуке получается небольшим, а значит небольшим остается и шарнирный момент.

Другой вид простейшей аэродинамической компенсации — это роговая компенсация . Она обычно реализуется на рулевых поверхностях килей и стабилизаторов мало- и среднескоростных самолетов.

В этом варианте управляющая поверхность снабжена так называемым роговым компенсатором . Он представляет собой часть этой поверхности (выступ), расположенную перед ее осью вращения и спрофилированную так, что в нейтральном положении она формирует законцовку киля или стабилизатора.

А при отклонении рулевой поверхности она выдвигается в поток (появляется рог)и на ней формируется аэродинамическая сила, момент которой относительно оси вращения рулевой поверхности направлен в сторону, обратную направлению шарнирного момента.

Принцип роговой компенсации.

Существенный недостаток роговой компенсации, основательно снизивший ее применение в современной авиации, — это ухудшение условий обтекания аэродинамических поверхностей при полете на больших скоростях и при больших углах отклонения рулей на различных углах атаки, что вызывает ощутимое повышение лобового сопротивления и возникновение вибраций конструкции.

Для уменьшения этого эффекта роговая компенсация может быть использована в комплексе с осевой. Они дополняют друг друга и позволяют расширить диапазон их применения для различных режимов полета, тем более, что в конструктивном плане оба эти варианта имеют определенное сходство…

При этом способе носок рулевой поверхности помещается в камеру внутри несущей поверхности (крыла), которая разделена на две части гибкой непроницаемой перегородкой (называемой еще балансировочной панелью ), соединенной с носком и с конструкцией крыла. В местах сопряжения рулевой поверхности с несущей оставлены узкие щели, сообщающие внутренние полости с атмосферой.

При отклонении руля на одной из его поверхностей образуется область поддавливания , а на другой область разрежения . Обе эти области через указанные щели сообщаются с внутренними полостями, в результате чего гибкая перегородка прогибается в соответствующую сторону, увлекая за собой всю рулевую поверхность.

Принцип внутренней компенсации.

То есть образуется момент, направленный в сторону, обратную шарнирному моменту управления. Такой тип компенсации используют обычно на элеронах, на скоростных самолетах. Здесь отсутствует выход носка управляющей поверхности в поток, тем самым не увеличивается лобовое сопротивление. Однако возможны конструктивные трудности для осуществления такой компенсации на тонких профилях.

На дозвуковых однорежимных самолетах используются так называемые сервокомпенсаторы (от понятия servo-, то есть автоматическое вспомогательное устройство) или флэттнеры (по имени изобретателя, немецкого инженера Антона Флеттнера (Anton Flettner)). Такие компенсаторы представляют из себя небольшую управляющую поверхность, устанавливаемую вдоль задней кромки руля.

Конструктивно все выполнено так, что эта поверхность автоматически отклоняется в сторону, обратную отклонению руля. Создаваемая при этом аэродинамическая сила на плече до оси вращения компенсатора уравновешивает частично или полностью шарнирный момент руля.

Так как это плечо относительно велико, то даже при малой площади поверхности и небольших углах ее отклонения величина момента, который она создает, оказывается достаточной для эффективной компенсации шарнирного момента рулевой поверхности. Но при этом сервокомпенсатор несколько уменьшает эффективность руля, так как «забирает» часть его поверхности для образования компенсационного момента.

Аэродинамические сервокомпенсаторы по принципу их управления подразделяются на два вида.

Первый вид — это так называемый кинематический . В нем управление поверхностью компенсатора осуществляется с помощью тяги, связанной с неподвижной частью несущей поверхности. То есть чем больше величина отклонения руля, тем больше отклонение поверхности компенсатора. Летчик при этом не может влиять на процесс из кабины, но в наземных условиях управляющая тяга в общем случае может быть отрегулирована на разные углы отклонения.

Схема работы кинематического сервокомпенсатора.

Еще одна схема для кинематического сервокомпенсатора. 1 - управляющая тяга, 2 - управляющая поверхность, 3 - компенсатор.

Второй вид — более совершенный — это пружинный сервокомпенсатор. В его конструкции основное звено — двуплечий рычаг, свободно вращающийся на оси вращения рулевой поверхности. Одно плечо этого рычага зажато между пружинами, имеющими определенную затяжку. Второе соединено с главной управляющей тягой и тягой управления поверхностью компенсатора.

Пока нагрузки на рулевую поверхность (шарнирный момент) невелики, то есть не превышают величину затяжки пружин, вся конструкция руля вращается под действием главной управляющей тяги как одно целое и руль отклоняется без отклонения компенсатора.

Но как только шарнирный момент достигнет какой-то предельной величины, которая больше затяжки одной из пружин, двуплечий рычаг начинает поворачиваться, отклоняя тем самым поверхность компенсатора. То есть весь механизм как бы включается автоматически, снижая тем самым усилия, потребные для отклонения руля управления.

Получается, что сервокомпенсатор такой конструкции можно использовать практически на любом режиме полета, потому что он работает пропорционально усилиям, действующим в системе управления, а не углам отклонения управляющих поверхностей.

Антисервокомпенсатор.
Видимо следует упомянуть и о так называемом антисервокомпенсаторе , хотя функции этого устройства прямо противоположны нашей теме. То есть антисервокомпенсатор не уменьшает шарнирный момент, а наоборот увеличивает его. Сам компенсатор отклоняется в сторону обратную для обычного сервокомпенсатора. По аналогии с «перекомпенсацией» можно сказать, что происходит «недокомпенсация» :-).

Принцип работы антисервокомпенсатора.

Конструктивное исполнение антисервокомпенсатора.

Антикомпенсатор на стабилизаторе самолета Piper Рa-28-140 Сherokee. Носок стабилизатора вниз - антикомпенсатор вверх.

Применяется это устройство обычно на легкомоторных самолетах, которые не оборудованы отдельным рулем высоты. Его функции выполняет цельноповоротный стабилизатор. Такая конструкция делает легкий самолет достаточно чувствительным в управлении, поэтому антисервокомпенсатор «затяжеляет» управление, то есть как бы улучшает обратную связь от стабилизатора к пилоту с тем, чтобы тот «не переборщил» и не применил чрезмерные перемещения ручки управления.

Существует еще один способ аэродинамической компенсации шарнирного момента. Но стоит он несколько обособленно от остальных. Дело в том, что все только что описанные компенсаторы работают с маневренными нагрузками (я о них выше говорил), а этот используется для компенсации нагрузок балансировочных (тоже об этом говорилось :-)).

Cпособ носит название триммирование (от trim , что буквально означает «приводить в порядок»). и в общем случае с его помощью балансировочные нагрузки на органах управления в кабине могут быть уменьшены до нуля. В этом случае самолет считается полностью стриммированным.

Схема принципа действия триммера.

В традиционных системах триммирования активный элемент конструкции при этом способе — триммер (собственно компенсационная поверхность), а сама конструкция (как и ее аэродинамическое действие) в принципе аналогична конструкции кинематического сервокомпенсатора.

Еще одна схема принципа работы триммера. Здесь 2 - триммер, 1 - электромеханизм управления триммером.

Триммер (trim tab) руля высоты.

Только триммер имеет свою собственную систему управления (обычно механическую или электромеханическую) и может отклоняться летчиком из кабины, который в этом случае по своему желанию выбирает или меняет величину компенсации.

Существуют еще так называемые неуправляемые триммеры. Они могут быть использованы на нескоростных самолетах и устанавливаются обычно на элеронах и рулях направления. Представляют из себя чаще всего отгибаемые вручную пластины и используются при наличии какой-либо аэродинамической несимметричности летательного аппарата.

Принцип действия нерегулируемого триммера на элероне самолета.

Нерегулируемый триммер на руле направления самолета L-29.

Неуправляемый триммер на РН учебно-тренировочного самолета.

Нерегулируемый триммер на РН легкомоторного самолета.

Такого же типа пластины устанавливают на лопастях несущего винта вертолетов. Они работают по такому же принципу и служат для устранения так называемой несоконусности лопастей при вращении, то есть, чтобы лопасти не выходили за границы поверхности воображаемого конуса, образуемого лопастями несущего винта при его вращении.

Читайте так же:  Нотариус плотникова томилино

Нерегулируемый триммер на лопасти вертолета.

Такие триммеры так же подгибаются вручную на основании данных специальных датчиков, полученных во время наземных испытаний.

Кроме традиционной конструкции триммера применяется также триммирование с помощью управляемого (или передвижного) стабилизатора , хотя этот способ уже нельзя отнести к аэродинамической компенсации. Угол установки стабилизатора меняется с помощью специального механизма, управляемого летчиком из кабины и не требующего от него никаких усилий.

Принцип перестановки стабилизатора.

Взаимное перемещение стабилизатора и руля высоты.

В процессе перекладки стабилизатора угол наклона руля высоты также плавно меняется, чтобы сохранить балансировку самолета. Все это продолжается до тех пор, пока аэродинамическая сила, вновь появившаяся на стабилизаторе не станет равна силе на руле высоты, которая была там до начала перекладки. При этом усилие на ручке управления в кабине становится близким к нулю.

В общем случае применение управляемого стабилизатора позволяет уменьшить размеры руля высоты и, соответственно, потребные усилия для его перемещения. Этот способ достаточно эффективен в большом диапазоне центровок и скоростей, при этом стабилизатор имеет меньшее лобовое сопротивление, нежели с традиционным триммером.

Однако, сама система перекладки стабилизатора по сравнению с обычным триммированием имеет больший вес. Кроме того существует необходимость четкого выполнения правил и параметров установки стабилизатора перед взлетом в соответствии с центровкой летательного аппарата. Несоблюдение этих правил чревато тяжелыми летными происшествиями.

Регулируемый стабилизатор самолета Embraer ERJ-190.

Кроме регулируемого стабилизатора существуют и другие системы, в которых уменьшение воспринимаемых нагрузок осуществляется за счет уменьшения площади управляющих поверхностей, но при этом без снижения эффективности самих систем управления в целом.

В первую очередь это так называемый серворуль. В такой конструкции главная управляющая поверхность, то есть собственно руль свободно подвешен на своем шарнире и не связан с системой управления, которую контролирует пилот. Но на его конце так же шарнирно подвешена в несколько раз меньшая по площади аэродинамическая поверхность (внешне похожая на триммер), которая носит название серворуль и которая как раз и управляется летчиком из кабины.

Схема действия серворуля.

Отклоняется серворуль в сторону, обратную необходимому отклонению главного руля. Возникающая при этом на нем сила заставляет свободно подвешенный основной руль отклоняться в нужном направлении. Это отклонение будет происходить до тех пор, пока момент от силы на серворуле не уравновесит шарнирный момент (тот самый вредный, который нужно уменьшить) на главном руле.

Такое равновесие возможно из-за большой разницы плеч сил действующих на руле и серворуле. При этом летчик на ручке управления ощущает только усилия на серворуле, то есть совсем небольшие, потому что сам серворуль имеет небольшую площадь.

Основные недостатки систем управления с серворулем — это некоторое запаздывание в отклонении основного руля и относительное ухудшение его работы на малых скоростях.

Совместное использование элеронов и элерон-интерцепторов для поперечного управления.

Еще один пример использования того же принципа. Это применение элерон-интерцепторов в канале поперечного управления. Сами эти органы управления приводятся в действие отдельной системой и не влияют на усилие на ручке управления самолетом. Но их параллельное с элеронами применение кроме ряда других положительных моментов ( тема для другой статьи:-)) позволяет уменьшить площадь элеронов, а значит и величину шарнирного момента на них.

Использование бустеров в системе управления.

Способов компенсации шарнирного момента, как видите, хватает. Однако, как уже говорилось ранее, величина его с ростом размеров летательного аппарата и скорости его полета растет. Рано или поздно может наступить такой момент, когда ни один из существующих приемов компенсации уже не будет эффективен (особенно это касается маневренных нагрузок).

Чтобы это избежать и увеличить возможности пилотирования человеком летательного аппарата на различных режимах на многих современных скоростных (или крупноразмерных) самолетах в каналах управления используют гидроусиление , суть которого в том, что летчик, перемещая ручку управления, воздействует только на перемещение маленького золотника ( сервоклапана ), то есть специального управляющего элемента в системе автоматики управления.

А уже этот золотник формирует и оказывает управляющее воздействие на большой гидроцилиндр (бустер), который связан непосредственно с самолетными рулями.

Однако, если говорить точнее, то по характеру воздействия на этот сервоклапан системы гидроусиления делятся на два вида.

Схема гидросистемы усиления обратимого типа.

Первый — это так называемые системы обратимого типа . Особенность принципа их работы (кстати, такого же как в автомобильных системах усиления руля) заключается в том, что для приведения в действие всей системы (начиная с золотника-сервоклапана) необходимо приложить некоторое небольшое первоначальное усилие, которое сдвигает управляющую поверхность вместе с сервоклапаном. В дальнейшем уже в работу по полной в ступают гидроусилители (бустеры) и пилот использует управление в полном объеме.

Положительной стороной такой системы является тот факт, что пилот при ее использовании чувствует на ручке и педалях все те же маневренные нагрузки в виде шарнирного момента. Не в полном объеме, конечно, но этого достаточно для правильного пилотирования. А недостаток ее в том, что при больших скоростях/размерах самолета нагрузки могут возрасти настолько, что пилот уже не сможет сделать первоначальный сдвиг для введения системы в действие.

Схема гидросистемы усиления необратимого типа.

Вот для таких самолетов и режимов полета существует второй вид гидросистем усиления — системы необратимого типа . При использовании таких систем полностью отсутствует обратное воздействие полетных нагрузок на ручку управления, и летчик не ощущает даже малой части тех нагрузок, которые воспринимает на себя рулевая поверхность. Все эти нагрузки полностью замыкаются на гидроусилитель.

Но, как уже упоминалось ранее, летчика нельзя полностью лишить ощущений, свойственных всему процессу управления. Ведь при помощи этих ощущений он «чувствует» самолет, и без них этого самого управления просто не будет.

Поэтому на самолетах, использующих в системах управления гидроусилители необратимого типа, применяют специальные устройства, включенные в линию проводки управления, которые имитируют полетные усилия на ручке управления и педалях. Это различные механизмы (пружинные) и гидромеханизмы загрузки , автоматы регулирования загрузки .

Автоматы регулирования используют данные о скоростном напоре, полученные от датчиков полного и статического давления воздуха, создавая тем самым реальную картину, соответствующую ручному управлению.

Совместно с механизмами загрузки работают и механизмы триммерного эффекта , так же имитирующие работу триммеров, как при полностью ручном управлении.

Механизм триммерного эффекта вертолета.

Механизмы триммерного эффекта в этом случае имеют принципиальное сходство с устройством триммирования на вертолете. Так как конструктивно выполнить на вертолете триммеры подобно самолетным не представляется возможным, то разгрузка ручки управления вертолета в простейшем случае выполняется с использованием электромеханического пружинного разгрузочного устройства .

На этом, пожалуй, и все. Таковы в общем и целом способы и технические решения для ограничения или же устранения эффекта шарнирного момента в системе управления летательным аппаратом. Все они применяются в той или иной степени. Какие-то часто, какие-то значительно реже, в зависимости от предназначения и конструкции самолета и вертолета.

Однако вся техника, как и и системы управления, достаточно быстро совершенствуется. Уже сейчас просматривается тенденция превращения летчика (в особенности на современных лайнерах последнего поколения) из лица активно пилотирующего в лицо пассивно контролирующее :-), за которое думает компьютер, а пилотирование осуществляют подчиняющиеся ему устройства и системы автоматики, в которых в том числе и процесс триммирования выполняется автоматически.

Если так пойдет дальше, то рано или поздно настанет момент, когда все вышеописанные технические ухищрения окажутся ненужными….

Может быть… Не исключено…Но, видимо не сейчас… Не в ближайшем будущем :-)….

В заключение некоторые характерные фотографии по теме, которые в текст впихивать не стал ? …

До новых встреч.

Самолет Vought F4U Corsair.

Хвостовое оперение самолета Vought F4U Corsair. Видны сервокомпенсаторы руля направления и руля высоты (внешний), триммер руля высоты (внутренний). Компенсация рулей осевая (определенное конструктивное сходство с роговой).

Работа сервокомпенсаторов РН и РВ самолета Vought F4U Corsair.

Колесо механического управления триммером руля высоты самолета Cessna-172.

Кабина самолета Boeing 737 Classic. Колеса (штурвалы) управления перестановкой стабилизатора на среднем пульте.

Кабина Airbus 320-214. Хорошо видны органы управления триммированием по тангажу (колеса с белыми метками).

No related posts.

27 Комментариев: Что нам мешает управлять и как с этим бороться.

У меня еще раз возник вопрос про те силы , о которых вы пишите.
У меня возникло два вопроса по большим самолетам. Заранее извиняюсь за терминологию )

1)Двигатель когда работает, создает момент вдоль продольной оси х(реактивный момент винта, или реакция вращения винта). На маленьких самолетах его парируют элеронами. А на больших самолетах двигатели вращаются в одну сторону или в разные(для компенсации этого момента).

2)Второй вопрос по этапам взлета: у больших самолетов есть все режимы обычного взлета: разгон, отрыв, потом выдерживание для набора потребной скорости, а потом уже набор высоты на правильной скорости?

1. Такого рода вредные моменты более существенны для легких самолетов с поршневыми двигателями. Для более тяжелых самолетов они менее существенны. Двигатели и винты обычно вращаются в одну сторону. 2. Режимы обычно зависят от мощности двигателей. Для самолетов с ПД такой этап, как выравнивание обычно присутствует (для набора скорости), а самолеты с ТРД и ТВД чаще всего имеют запас мощности и не нуждаются в выравнивании, идут в набор практически сразу после отрыва.

Очень бы хотелось узнать детально о характеристиках поршневых (а возможно и не только) самолётов, которые частенько указываются на различных сайтах. Характеристики такие как: крейсерская скорость, скороподъемность, размах крыла, площадь крыла, посадочная и взлетная дистанции, полезная нагрузка. Если такая статья уже есть на вашем сайте- прошу поделиться ссылкой. Жду с нетерпением ответа. Всего доброго.

Не очень понял… Вас интересует суть этих параметров или их значения для конкретных типов самолетов?

Для любых предложений по сайту: [email protected]